采纳答案成功!
向帮助你的同学说点啥吧!感谢那些助人为乐的人
老师,在本小节5.56分时,您提到11卷积层,与33卷积层,与5*5卷积层,由于padding=“same”,所以它们的输出与输入是一样的,padding可以保证数据不损失,对吧,但您也说过了数据是否损失与输出图像的大小无关,那么(32-1+2P)/1 + 1 与(32-3+2P)/1 + 1 与(32-5+2P)/1 + 1 怎么会是一样的呢?
因为padding不一样啊,不同的卷积核使用的padding size是不一样的,比如1x1的卷积核,padding就是0, 3x3的卷积核,padding就是1,5x5的卷积核,padding就是2。 padding不同,所以它们的输出都是一样的。
非常感谢!
登录后可查看更多问答,登录/注册
深度学习算法工程师必学,深入理解深度学习核心算法CNN RNN GAN
1.5k 9
1.5k 8
1.0k 7
1.1k 7
1.9k 7