请稍等 ...
×

采纳答案成功!

向帮助你的同学说点啥吧!感谢那些助人为乐的人

Inception的输出shape

conv1 = tf.layers.conv2d(x_image,
32, # output channel number
(3,3), # kernel size
padding = ‘same’,
activation = tf.nn.relu,
name = ‘conv1’)

pooling1 = tf.layers.max_pooling2d(conv1,
(2, 2), # kernel size
(2, 2), # stride
name = ‘pool1’)

inception_2a = inception_block(pooling1,
[16, 16, 16],
name = ‘inception_2a’)
inception_2b = inception_block(inception_2a,
[16, 16, 16],
name = ‘inception_2b’)

pooling2 = tf.layers.max_pooling2d(inception_2b,
(2, 2), # kernel size
(2, 2), # stride
name = ‘pool2’)

inception_3a = inception_block(pooling2,
[16, 16, 16],
name = ‘inception_3a’)
inception_3b = inception_block(inception_3a,
[16, 16, 16],
name = ‘inception_3b’)

pooling3 = tf.layers.max_pooling2d(inception_3b,
(2, 2), # kernel size
(2, 2), # stride
name = ‘pool3’)

flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)
老师Inception这节的整个过程各个操作后的shape您能解答一下吗

正在回答 回答被采纳积分+3

1回答

正十七 2021-07-23 07:18:57

参考这个问题:https://coding.imooc.com/learn/questiondetail/nlz2pX1ANAKXaG4Q.html

直接把inception_* 的这些tensor都放到sess.run里,得到的值就可以看到shape了。

0 回复 有任何疑惑可以回复我~
问题已解决,确定采纳
还有疑问,暂不采纳
意见反馈 帮助中心 APP下载
官方微信