请稍等 ...
×

采纳答案成功!

向帮助你的同学说点啥吧!感谢那些助人为乐的人

2.7房价预测val_accuracy一直是.0016

老师你好,2.7房价预测,我跟您的代码一致,但是val_accuracy一直是.0016,最终验证也是很低

我在尝试改了学习率以及0.1,0.001.0.01但是正确率依旧上不去

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf

from tensorflow import keras

print(tf.__version__)
print(sys.version_info)
for modul in mpl, np, pd, tf, sklearn:
    print(modul.__name__, modul.__version__)

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()
print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)

import pprint

pprint.pprint(housing.data[0:5])

from sklearn.model_selection import train_test_split

x_train_all, x_test, y_train_all, y_test = train_test_split(
    housing.data, housing.target, random_state=7)
x_train, x_valid, y_train, y_valid = train_test_split(
    x_train_all, y_train_all)
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)
x_valid_scaled = scaler.transform(x_valid)

model = keras.models.Sequential([
    keras.layers.Dense(30, activation='relu', input_shape=x_train.shape[1:]),
    keras.layers.Dense(1)])

model.summary()
model.compile(loss='mean_squared_error', optimizer=keras.optimizers.SGD(0.1), metrics=['accuracy'])
callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-6)]
model.fit(x_train_scaled, y_train,
          validation_data=(x_valid_scaled, y_valid),
          epochs=100,)
model.evaluate(x_test_scaled, y_test)

如果老师有空,希望解答一下,感谢~

正在回答 回答被采纳积分+3

1回答

正十七 2020-09-17 22:40:58

同学你好,房价预测是一个回归问题,即预测出正确的实数,所以只有loss,没有accuracy,不能用accuracy来衡量, loss衡量的是预测出来的值和实际值的差距,如果你的loss值是0.016的话,那么说明模型拟合的很好。

2 回复 有任何疑惑可以回复我~
问题已解决,确定采纳
还有疑问,暂不采纳
微信客服

购课补贴
联系客服咨询优惠详情

帮助反馈 APP下载

慕课网APP
您的移动学习伙伴

公众号

扫描二维码
关注慕课网微信公众号