第一章是我们的课程导学,在这一章节中,我们会介绍课程概况,并对主流的深度学习框架进行简单对比,帮助大家对PyTorch和深度学习有一个最基本的认识。
本章是我们的热身启动环节,在这一章中,我将带你配置课程所需的环境,然后进行两个热身小项目,亲自动手实现图像分类和图像风格迁移,让你感受一下深度学习的魅力。
第三章中,我们会为你介绍在大厂中开展数据挖掘项目的流程,让你在课程的一开始就能够具备全局视角,并对课程中的重难点和具体项目内容进行介绍,更清楚的了解课程编排。
我们的课程进入正题,在这一章,我们一起来学习一下PyTorch中最核心的数据结构——张量。张量是PyTorch中进行各类运算的基础单元,所有的数据都需要以张量的形式进行运算,弄懂张量,就懂了PyTorch一半的内容。
项目千万条,数据第一条,获取数据是我们每一个项目的第一步。这一章里,我们从最常见的图片开始,带你探索把各类数据转为张量的方法,搭配我们提供的数据集,我们一起完成对图像、表格、文本数据的处理。
这一章围绕着深度学习概念开展,所有的概念穿插其中,也包含了详细的代码实践。借助一个简单的温度计示数转换的小例子,我们从人本身如何开展模型学习入手,然后演进到使用计算机进行,最后用PyTorch组件实现对转换公式的模拟和学习。
项目开始变得有意思起来,本章不再局限于深度学习的基本概念,而是向完整的模型搭建迈进。在这一章节中,我们引入了CIFAR数据集,并使用全连接网络对齐进行分类学习,为了提升性能和效果,又将其转换为卷积网络。在这个过程中,我们完成了从数据处理,到模型训练,从效果评估到模型优化的完整流程。
我们最后的大项目终于要开始了。不要慌,我们在这一章中先来对项目的背景及数据建立完整的认知。我会带领你熟悉业务,并针对业务定制我们的解决方案。然后,我们会去获取项目所需的三维CT数据,并为其进行清理、构建Dataset类、分割成训练集和验证集,甚至是学习如何可视化这些CT数据。
这一章是我们大型实战项目的核心内容,里面包含了实战中的两个模型的构建——结节分割模型和结节分类模型。我们需要从偌大的CT影像中把可能是结节的数据区域切割出来,然后再用分类模型判定其是否有可能是一个真的肿瘤。这一章的内容很多,除了模型核心代码的编写,我们还会学习新的损失计算方法,新的模型评估指标,新的优化方案,以及如何连接Tensorboard来观察模型效果。
这一章的内容不多,但却是我们完成实战项目不可缺少的环节。这一章会学习如何通过finetune借助已经训练好的模型用于新的目标,以及借助ROC曲线来完成模型效果评估。同时,这一章我们会把上一章中的两个模型以及本章中新构建的恶性预测模型连接起来完成我们端到端的检测。最后,我们会介绍一下可能得部署工程框架,为将来的工程应用打下基础。至此,我们的大型项目实战已经构建完成。
最后一章,我们一起来回顾我们讲过的内容,对重点内容进行总结和归纳。最后的最后,我希望再跟大家分享一下在工作中的心得体会,如何应对面试以及如何持续学习,感谢与大家相遇。
选课、学习遇到问题?
扫码添加指导老师 1V1 帮助你!
添加后老师会第一时间解决你的问题