全部试看小节
本章将主要介绍Anaconda和Jupyter Notebook。包括如何在windows,Mac,linux等平台上安装Anaconda,以及Jupyter Notebook的基本启动使用方法。
本章将介绍Python数据科学领域里最基础的一个库——Numpy,回顾矩阵运算基础,介绍最重要的数据结构Array以及如何通过Numpy进行数组和矩阵运算。
本章将介绍Python数据科学领域用于数据分析最重要的一个库——Pandas。将从pandas里最重要的两种数据结构Series和DataFrame开始,介绍其创建和基本操作,通过实际操作理解Series和DataFrame的关系。
本章是Pandas的进阶。我们会使用Pandas进行高级的数据分析操作,包括如何去做数据清洗、预处理和排序等数学计算,数据的分箱技术,分组技术,聚合技术,以及透视表等。
数据的可视化是数据分析领域里非常重要的内容。本章会学习Matplotlib的基本使用,包括如何对Pandas里的Series和DataFrame绘图, 以及图形样式和显示模式的设置等内容。
Seaborn是对Matplotlib的进一步封装,其强大的调色功能和内置的多种多样的绘图模式,使之成为当下最流行的数据科学绘图工具。本章将介绍Seaborn的基本使用,以及和matplotlib的功能对比。
通过前六章的学习,我们基本上掌握了数据分析领域里主要工具的使用,本章将通过一个股票市场的分析实战项目,和大家一起用学过的知识去分析数据,进而得到有用的信息。
全部试看小节
资深网络运维工程师,现居荷兰,在某银行数据中心网络部门担任资深网络运维工程师,负责Net DevOps的落地实施。此前先后曾在Cisco、KPN等公司工作10年之久,对运维自动化,DevOps有着丰富的实战经验。17年开始涉足在线教育,中英文授课,学生超过3万人。
如无法下载使用图片另存为
下载海报选课、学习遇到问题?
扫码添加指导老师 1V1 帮助你!
添加后老师会第一时间解决你的问题