第5章 计算机视觉与卷积神经网络基础串讲
主要介绍计算机视觉的基本概念,涉及到图像数据表示,颜色空间,亮度对比度,边缘提取,滤波与锐化等基础概念,然后引入深度学习的基本概念(前向运算、反向传播等)、并详细介绍了基本网络单元(卷积层、池化层、激活层、Dropout层、BN层、FC层、损失层等)、感受野、参数量计算量评估等,另外,课程中帮助大家梳理了卷积神经网络发展的主要脉络,包括典型网络结构(AlexNet、VGGNet、ResNet等),通过介绍深度学习基础知识帮助大家从宏观和微观两个角度掌握深度学习的基本概念,为后续课程的学习奠定基础。
5-1 计算机视觉基本概念
购买后可查看完整视频