更多
第一步搭建搭建开发环境,介绍百度的aistudio以及paddlepaddle。指引对于没有显卡资源的同学如何通过aistudio免费使用v100、和亚马逊的算力资源。
本章了解了解chatGPT初始技术,讲解并代码实践了语言模型最初的词向量技术word2vec。以及LSTM和基于LSTM的动态词向量ELMo。
本章从seq2seq结构与注意力机制的基础讲起,通过具体案例展示其应用。随后,详细解析了Transformer的核心组件,包括多头注意力机制、残差链接解决梯度消失问题、LayerNorm提升训练稳定性,以及解码器的运作机制。此外,还探讨了sparse-Transformer稀疏模型与Transformer-XL在解决长序列问题上的创新。最后,本章进行了全面梳理与总结,为理解chatGPT的强大能力提供了坚实的理论基础。
本章全面探索了Transformer架构的另一重要分支——Bert系列模型。从评估指标、subword算法、常见NLP任务等基础讲起,深入分析了Bert预训练模型及其在情感分析任务中的Paddle实战应用。同时,讲解了Bert论文,并动手实践开发了一个Bert。讲了基于bert的ernie和plato。
讲解了后面ChatGPT训练依赖的强化学习相关知识。从RL基础概念到马尔可夫过程,再到三种主要方法、DQN及其改进算法、Actor-Critic框架、TRPO与PPO等高级算法,全方位展示了强化学习的理论框架与实战应用。通过PyTorch框架的代码实践。最后,本章总结了强化学习的关键点,为掌握chatGPT的先进技术提供了坚实支撑。
本章追溯了chatGPT技术的前身,从GPT-1的初步探索,到GPT-2的扩展,再到GPT-3的飞跃性发展,展现了自然语言处理领域大模型技术的演进历程。同时,介绍了基于GPT技术开发的多个重要模型,如GPT-Codex、AlphaCode及Instruct-GPT。此外讲解了GPT系列论文,以及代码生成的2篇论文和ChatGPT训练的相关逻辑。
本章详细阐述了如何使用RLHF方法训练类ChatGPT模型的全过程。从SFT有监督训练的数据处理、模型训练,到RM奖励模型训练,再到RLHF强化学习人类反馈训练。通过一步步的代码实践,使读者能够深入理解并掌握ChatGPT类模型的训练流程与关键技术。
本章聚焦于低成本且高效的模型微调技术PEFT,包括BitFit、Prefix-Tuning、Prompt-Tuning、P-Tuning、P-Tuning v2及LoRA等方法。以及代码实践了一个使用AdaLoRA训练ChatGLM2的小项目。本章总结了PEFT技术的关键点,为大规模模型的快速适应提供了新思路。
讲解了langchain的几个接口,并基于faiss+ChatGLM2+langchain实现了一个简单的知识库问题。 本章探讨了如何利用langchain框架结合大模型ChatGLM2,构建高效的知识库问答。讲解了langchain的几个接口,并基于faiss+ChatGLM2+langchain实现了一个简单的知识库问题。本章总结了langchain与知识增强LLM的结合优势,为构建智能问答系统提供了实用指南。
选课、学习遇到问题?
扫码添加指导老师 1V1 帮助你!
添加后老师会第一时间解决你的问题